
The sdii User’s Manual

sdii – compute significance of differences intervals (SDIs)1

Description

sdii computes SDIs to indicate whether two points estimates (typically the mean of distributions or of

samples from the study population) are statistically or substantively distinct. The second i in the name

indicates that the command has “immediate” features, in the sense that for some specifications the command

computes estimates not from the data stored in memory but from numbers typed as arguments.2, 3

Quick start

Compute SDIs to compare two distributions with the following means and standard deviations: µ1 = 10, σ1

= 2, and µ2 = 5, σ2 = 4. Further assume the distributions are correlated at the 0.5 level.

sdii, sample1(10 2) sample2(5 4) corr(.5)

Compute SDIs to compare two populations represented by samples x1 and x2, with the following number of

observations, means, and standard deviations: n1 = 60, x1 = 10, sd1 = 2, and n2 = 40, x2 = 5, sd2 = 4.

sdii, sample1(40 10 2) sample2(40 5 4)

As above, but assume unpaired samples and unequal population variances.

sdii, sample1(60 10 2) sample2(40 5 4) unpaired unequal

Compute SDIs to compare the underlying populations for the two samples in variables v1 and v2.

sdii v1 v2

As above, but compute percentile SDIs and report the median rather than mean as the summary statistic.

sdii v1 v2, median percentile

Compute SDIs to compare the two group samples in variable v1 defined by groupvar.

sdii v1, by(groupvar)

The sdii syntax

Compare two distributions or paired samples with set characteristics

1 The sdii program its associated manual come “as is” without warranty of any kind, either expressed
or implied, including, but not limited to, the suitability and fitness for a particular purpose. Improvements
and/or changes in the product and the program described in this manual may be made at any time and
without notice.

2 The description of the several syntax elements, options, and formulas borrow heavily, or reproduce

excerpts ad litteram, from the official pctile, power, and ttest manuals (StataCorp 2017).
3 This work was supported by the British Academy [SRG1819\191241].
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sdii, sample1(
[

#obs1
]

#mean1 #sd1) sample2(
[

#obs2
]

#mean2 #sd2)
[

options options1
]

Compare two unpaired samples with set characteristics

sdii, sample1(#obs1 #mean1 #sd1) sample2(#obs2 #mean2 #sd2) unpaired
[

options options2
]

Compare two paired variable samples

sdii varname1 varname2
[

if
] [

in
] [

weight
] [

, options options1
]

or
sdii varname1

[
if
] [

in
] [

weight
]

, variable2(exp)
[

options options1
]

Compare two unpaired variable samples

sdii varname1 varname2
[

if
] [

in
] [

weight
]

, unpaired
[

options options2
]

or
sdii varname1

[
if
] [

in
] [

weight
]

, variable2(exp) unpaired
[

options options2
]

or
sdii varname

[
if
] [

in
] [

weight
]

, by(groupvar)
[

options options2
]

Note: Syntax elements within square brackets [ ] are optional. Underlining indicates minimal abbreviation.

options Description

difference report the difference in estimates
level(#) set confidence level; default is level(95)
mvalue(#) set meaningful value m; default is 0
nolegend suppress legend of output items and explanatory notes
power[(#)] power; default is power(0.8)
precision(#) set level of precision for SDIs; default is 1
reverse reverse order for the difference in estimates computation
sample1([#obs1] #mean1 #sd1) input the number of observations, mean, and standard deviation of

the first sample
s1([#obs1] #mean1 #sd1) shorthand for sample1([#obs1] #mean1 #sd1)
sample2([#obs2] #mean2 #sd2) input the number of observations, mean, and standard deviation of

the second sample
s2([#obs2] #mean2 #sd2) shorthand for sample2([#obs2] #mean2 #sd2)
unpaired treat data as unpaired
variable2(exp) generates the second comparison sample as defined by the expres-

sion exp
var2(exp) shorthand for variable2(exp)

options1 (with paired data) Description

correlation(#) set correlation level; default is 0
distribution treat data as sampling distributions
median report the median as the statistic value; default is mean
percentile[(altdef)] compute percentile SDIs instead of the default, standard error-based

SDIs; with suboption altdef an alternative formula is used to calcu-
late percentiles

pctile[(altdef)] shorthand for percentile[(altdef)]

Continued on next page
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options2 (with unpaired data) Description

by(groupvar) variable defining the groups
unequal unpaired data have unequal variances
welch use Welch’s approximation

Note: Underlining indicates minimal abbreviation.

Options:

Main
difference reports the point estimate for the difference in estimates (typically the difference in means)

with its standard CI. The default is the 95% CI or as set by set level.

level(#) specifies the confidence level, as a percentage, for confidence intervals. The default is

level(95) or as set by set level.

mvalue(#) computes SDIs that indicate significance of differences other than zero. By typing

mvalue(1.3) we test whether the difference between the compared estimates is greater than 1.3 rather

than 0. # can be either positive or negative; by default # = 0.

nolegend specifies that the legend detailing the output items and the explanatory notes be suppressed.

power[(#)] computes the minimum detectable value of the effect size δ (the difference in estimates),

given power, significance level α , sample characteristics (size and standard deviation), and, for paired

data only, the correlation level ρ . Power is technically defined as (1−β ), where β is the probability

of type II error. # sets the power within the (0,1) range; by default # = 0.8. The significance level is

calculated from the specified level for confidence intervals, α = (1−level/100).

precision(#) specifies the decimal precision of reported SDIs, ranging from no decimals to up to six

decimals (# ∈ {0,1,2,3,4,5,6}). The difference between typing precision(0) or precision(3) is

that an 85-ish% SDI will be rounded to either 85% or 85.xxx%, respectively. The default is to report

one digit precision SDIs, i.e., # = 1.

reverse reverses the order of the two samples when calculating the difference in estimates. By default

sdii observes the order in which the samples are listed in varlist or sample∗(). Specifically, var2 or

sample2() is subtracted from var1 or sample1(), respectively. With by(), the group corresponding

to the largest value in the variable in by() is subtracted from the group with the smallest value in

by(). reverse reverses this behavior and the order in which variables appear in the table. reverse

also reverses the sign of the meaningful value m (i.e., m = mvalue(−#)).

sample1([#obs1] #mean1 #sd1) specifies the number of observations, mean, and standard deviation, respec-

tively, of the first sample. When sample1() receives only two arguments, these numbers are assumed
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to represent the mean and standard deviation of a normal distribution rather than of a sample (e.g.,

sample1(#mean1 #sd1)).

sample2([#obs2] #mean2 #sd2) same as above for the second sample. Specifying samples with different

number of observations (i.e., #obs1 6= #obs2), implies unpaired.

unpaired specifies that the data be treated as unpaired.

variable2(exp) generates the second sample as defined by the expression in the suboption exp. var2 can

be a transformation of the compared sample var1 (e.g., variable2(var1ˆ2)), or of another exiting

variable (e.g., variable2(var3+1)).

With paired data

correlation(#) indicates the correlation level, ρ , for paired data. It cannot be combined with varlist

as in this case ρ is the observed correlation level between the two variables. By default ρ = 0, and its

range is [−1,1].

distribution specifies that the compared variables are sampling distributions rather than sample

groups. Sampling distributions contain a number of realizations of the quantity of interest (e.g., sam-

ple mean), and are typically computed via simulations using either canned Stata commands (e.g.,

bootstrap) or user-written programs (e.g., Clarify). The relevant difference between sampling dis-

tributions and samples from the population, is that the standard error for the latter is a function of the

sample size, whereas for the former is simply the standard deviation. distribution does not affect

percentile-based SDIs, since they are not a function of the standard error.

median reports the median as the summary statistic value, whereas mean is the default. median can

be used only in combination with the percentile option.

percentile[(altdef)] specifies that percentile SDIs be calculated instead of standard error-based

SDIs, which is the default. The default method for calculating percentiles is to invert the empirical

distribution function by using averages, (xi + xi+1)/2, where the function is flat. When the suboption

altdef is specified, an alternative formula that uses an interpolation method is employed. Weights

cannot be used when altdef is specified.

With unpaired data

by(groupvar) specifies the groupvar that defines the two group samples to be compared. Specifying

by() implies unpaired.

unequal specifies that the unpaired data not to be assumed to have equal variances.

welch specifies that the approximate degrees of freedom for the test be obtained from Welch’s (1947)

formula rather than from the Satterthwaite’s (1946) approximation formula, which is the default when

unequal is specified. Specifying welch implies unequal and unpaired.
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Remarks and examples

Example 1: Compute SDIs to compare independent distributions
Let us say we want to compare two normal distributions. To do this we need to indicate the distributions’

means (i.e., µ1 = 10 and µ2 = 5) and standard deviations (i.e., σ1 = 2 and σ2 = 1). Optionally, we can also

specify the level of correlation. If not specified, as it is the case here, the distributions are assumed to be

independent (ρ = 0). The last step is to check whether the SDIs around the respective means overlap, in

which case the compared estimates are statistically indistinguishable. In this example there is no overlap as

the lower SDI bound of the higher statistic (here the mean of distribution 1), is higher than the upper SDI

bound of the lower statistic. Practically this means the two distributions are statistically different.
. sdii, sample1(10 2) sample2(5 1)

SDI Results

Comparison : Two distributions with correlation ρ = 0
(1) : sample1
(2) : sample2
Statistic : mean
Interval type : Standard error-based SDIs

Statistic Std. Err. [Interval Bounds] (%) Type

(1) 10 2 7.0782582 12.921742 85.6 SDI
(2) 5 1 3.5391291 6.4608709 85.6 SDI

Note: SDIs indicate significance of difference from 0.

Example 2: Compute SDIs to indicate substantive significance
Using the option mvalue(), next we test whether the difference between the same two distributions is

statistically different from 1 rather than 0. Additionally, we also report the difference in estimates with its

standard CI. In this case the associated SDIs overlap which means the difference in means is not statistically

distinct from 1, even though it is distinct from 0 (see Example 1). Testing for significance of differences

other than zero is a practical way to assess substantive significance.
. sdii, sample1(10 2) sample2(5 1) mvalue(1) difference

SDI Results

Comparison : Two distributions with correlation ρ = 0
(1) : sample1
(2) : sample2
Statistic : mean; (1-2) = mean(1) - mean(2)
Interval type : Standard error-based SDIs & CI

Statistic Std. Err. [Interval Bounds] (%) Type

(1) 10 2 6.4115915 13.588408 92.8 SDI
(2) 5 1 3.2057958 6.7942042 92.8 SDI
(1-2) 5 2.236068 .6173873 9.3826127 95 CI

Note: SDIs indicate significance of difference from 1.

5



Example 3: Compute SDIs to compare correlated distributions
Would the results change if the distributions were correlated at, let us say, the 0.5 level? As it turns out,

in this case the SDIs do not overlap which means the two distributions are substantively different (given a

meaning value m = 1). Since the only difference from Example 2 is the value of ρ , this example highlights

the fact that the difference in estimates is a function of their correlation level.
. sdii, sample1(10 2) sample2(5 1) m(1) corr(.5) diff

SDI Results

Comparison : Two distributions with correlation ρ = 0.50
(1) : sample1
(2) : sample2
Statistic : mean; (1-2) = mean(1) - mean(2)
Interval type : Standard error-based SDIs & CI

Statistic Std. Err. [Interval Bounds] (%) Type

(1) 10 2 7.0701619 12.929838 85.8 SDI
(2) 5 1 3.5350809 6.4649191 85.8 SDI
(1-2) 5 1.7320508 1.6052428 8.3947572 95 CI

Note: SDIs indicate significance of difference from 1.

Example 4: Compute SDIs to compare paired samples
In many practical applications the researcher only has data on a subset of the population. As a result, we

often end up comparing samples selected from the population. Below is a comparison between two paired

samples with the respective number of observations, means, and standard deviations. Since the associated

SDIs do not overlap, it means the two underlying populations are statistically distinct at the 10% level.
. sdii, sample1(40 10 2) sample2(40 5 4) level(90)

SDI Results

Comparison : Two paired samples with correlation ρ = 0
(1) : sample1
(2) : sample2
Number of obs = 40
Statistic : mean
Interval type : Standard error-based SDIs

Statistic Std. Err. [Interval Bounds] (%) Type

(1) 10 .31622777 9.6028711 10.397129 78.4 SDI
(2) 5 .63245553 4.2057423 5.7942577 78.4 SDI

Note: SDIs indicate significance of difference from 0.

Example 5: Compute SDIs to compare unpaired samples
While in some cases the researcher has multiple readings on the same subjects (e.g., patient data over time),

in other cases the subjects are distinct (e.g., different survey waves, treated and untreated experimental

groups, etc.). The latter type of data are unpaired and to compare sample means requires specific adjust-

ments. For such cases we need to use the unpaired option. Unlike paired data, unpaired samples can
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potentially have different number of observations. In this example the underlying populations represented

by the two unpaired samples are statistically distinct, as indicated by the lack of SDI overlap.
. sdii, sample1(60 10 2) sample2(40 5 4) unpaired

SDI Results

Comparison : Two unpaired samples with equal population variances
(1) : sample1
Number of obs (1) = 60
(2) : sample2
Number of obs (2) = 40
Statistic : mean
Interval type : Standard error-based SDIs

Statistic Std. Err. [Interval Bounds] (%) Type

(1) 10 .25819889 9.6536289 10.346371 81.6 SDI
(2) 5 .63245553 4.1463896 5.8536104 81.6 SDI

Note: SDIs indicate significance of difference from 0.

Example 6: Compute SDIs to compare unpaired samples with unequal population variances
In this example we use the same data but relax the assumption that the underlying populations have equal

variances. We also use Welch’s formula (rather than Satterthwaite’s) to calculate the approximate degrees

of freedom. Compared to the results from Example 5 the SDI level is slightly higher, but the substantive

results remain largely unchanged.
. sdii, sample1(60 10 2) sample2(40 5 4) unpaired unequal welch

SDI Results

Comparison : Two unpaired samples with unequal population variances
(1) : sample1
Number of obs (1) = 60
(2) : sample2
Number of obs (2) = 40
Statistic : mean
Interval type : Standard error-based SDIs

Statistic Std. Err. [Interval Bounds] (%) Type

(1) 10 .25819889 9.6047904 10.39521 86.9 SDI
(2) 5 .63245553 4.0248925 5.9751075 86.9 SDI

Note: SDIs indicate significance of difference from 0.

Example 7: Compute SDIs to compare paired variable samples
Let us say we want to compare two samples saved in distinct variables. For this example, as well as the next

two, we use the fuel data available from the StataCorp website. The data contains two variables, mpg1 and

mpg2, that record the miles per gallon consumption of cars with and without fuel treatment. To determine

whether the fuel treatment is effective, we compare the sample means by computing their associated SDIs.

Since the SDIs do not overlap, we can conclude that the cars that were treated (mpg1) have on average a

lower fuel consumption than their counterparts from mpg2.

7
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. use https://www.stata-press.com/data/r17/fuel, clear

. sdii mpg1 mpg2

SDI Results

Comparison : Two paired samples
(1) : mpg1 (variable)
(2) : mpg2 (variable)
Number of obs = 12
Statistic : mean
Interval type : Standard error-based SDIs

Statistic Std. Err. [Interval Bounds] (%) Type

(1) 21 .78817011 20.216612 21.783388 65.9 SDI
(2) 22.75 .93844649 21.817248 23.682752 65.9 SDI

Note: SDIs indicate significance of difference from 0.

Example 8: Compute percentile SDIs
For variable samples, sdii can alternatively compute percentile- rather than standard error-based SDIs.

Percentile intervals are often used with skewed data and in such cases the mean of the distribution may not

be the relevant summary statistic. With percentile, researchers have the option to request the median

rather than mean as the point estimate. In this example the percentile SDIs overlap which suggests that the

two car samples have similar fuel consumptions. The low number of observations, however, should make

us cautious of these results since the accuracy of percentile intervals increases with sample size.
. sdii mpg1 mpg2, percentile median

SDI Results

Comparison : Two paired samples
(1) : mpg1 (variable)
(2) : mpg2 (variable)
Number of obs = 12
Statistic : median
Interval type : Percentile-based SDIs

Statistic Std. Err. [Interval Bounds] (%) Type

(1) 20.5 .9878136 18 24 51.0 SDI
(2) 23 1.176155 21 25 51.0 SDI

Note: SDIs indicate significance of difference from 0.

Example 9: Compute SDIs to compare unpaired variable samples
Just because the compared samples are in adjacent variables with equal number of observations, does not

necessarily mean the data are paired. When this is not the case, we need to specify unpaired. As our

example illustrates, it matters whether the data is paired or unpaired. Compared to the results from Example

7, in this analysis the SDI level is substantively higher and the SDIs overlap. This in turn suggests that

treated and untreated cars have similar fuel consumptions.
. sdii mpg1 mpg2, unpaired
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SDI Results

Comparison : Two unpaired samples with equal population variances
(1) : mpg1 (variable)
Number of obs (1) = 12
(2) : mpg2 (variable)
Number of obs (2) = 12
Statistic : mean
Interval type : Standard error-based SDIs

Statistic Std. Err. [Interval Bounds] (%) Type

(1) 21 .78817011 19.839819 22.160181 83.1 SDI
(2) 22.75 .93844649 21.368613 24.131387 83.1 SDI

Note: SDIs indicate significance of difference from 0.

Example 10: Compute SDIs to compare group samples within the same variable
In the previous example the two samples were recorded in different variables. Alternatively, they can be

recorded in the same variable, with an additional variable identifying the groups. In such cases we need to

use the by() option. We use the stack command to stack variables mpg1 and mpg2, a command which

conveniently creates the by() variable, that is, _stack. The results are identical to those from Example 9,

the one with two variable samples.
. stack mpg1 mpg2, into(mpg) clear

. sdii mpg, by(_stack) unpaired

SDI Results

Comparison : Two unpaired samples with equal population variances
(1) : mpg if _stack==1 (variable)
Number of obs (1) = 12
(2) : mpg if _stack==2 (variable)
Number of obs (2) = 12
Statistic : mean
Interval type : Standard error-based SDIs

Statistic Std. Err. [Interval Bounds] (%) Type

(1) 21 .78817011 19.839819 22.160181 84.5 SDI
(2) 22.75 .93844649 21.368613 24.131387 84.5 SDI

Note: SDIs indicate significance of difference from 0.

Using sdii interactively with estimation and postestimation commands

Example 11: Compute SDIs to compare estimated statistics
The next two examples use the data from the Second National Health and Nutrition Examination Survey,

available from the StataCorp website (nhanes2f.dta). While the dataset is comprehensive and has many

variables, we estimate a simple logit model with two covariates. The dependent variable, diabetes, is a

dummy variable coded one if the respondent has diabetes. race, one of the two covariates, is a three category

variable (1 = White, 2 = Black, and 3 = Other), whereas the second covariate, age, is continuous. Looking
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at the race coefficients, the negative and statistically significant coefficient on Black indicates that blacks

are more likely to have diabetes than whites (the reference category). Yet there is no statistical difference

between other racial minorities and whites.

How do blacks fare compared to other minorities? Notably, it is not warranted to conclude that

blacks are more likely to have diabetes simply because the Other coefficient is statistically indistinguishable

from the base category, whereas Black is not. Since the associated 95% CIs overlap, we cannot tell from

the available information whether the two coefficients are statistically distinct. One approach to answer

this question is to compute the difference in coefficients via nlcom. If the standard CI of the difference

contains zero, the estimates are statistically indistinguishable. Since this is the case in our analysis, there is

no statistical difference between blacks and other minorities in terms of their probability of having diabetes.
. webuse nhanes2f, clear

. logit diabetes age i.race, nolog

Logistic regression Number of obs = 10,335
LR chi2(3) = 371.75
Prob > chi2 = 0.0000

Log likelihood = -1813.1895 Pseudo R2 = 0.0930

diabetes Coef. Std. Err. z P>|z| [95% Conf. Interval]

age .0595519 .0037348 15.95 0.000 .0522318 .066872

race
Black .7221263 .1270265 5.68 0.000 .4731588 .9710937
Other .1930256 .3517485 0.55 0.583 -.4963888 .88244

_cons -6.330175 .2318176 -27.31 0.000 -6.784529 -5.87582

. nlcom _b[2.race]-_b[3.race]

_nl_1: _b[2.race]-_b[3.race]

diabetes Coef. Std. Err. z P>|z| [95% Conf. Interval]

_nl_1 .5291007 .3666378 1.44 0.149 -.1894962 1.247698

How can we outline this finding using SDIs around the compared coefficients? We can do this by

using sdii interactively with the results saved by the logit estimation. For our example we are interested in

the 2.race and 3.race coefficients, which are saved in the e(b) matrix. The coefficients’ standard error is the

square root of their variance (var), which can be retrieved from the variance-covariance matrix e(V). Finally,

the correlation level is a function of the respective variances and covariance (cov): ρ(2.race, 3.race) =

cov(2.race, 3.race)/(
√

var(2.race)×
√

var(3.race)). After making copies of the two matrices of interest,

we need to select the matrix elements that correspond to the arguments of sample∗(µ∗ σ∗) from the sdii

syntax. To do this we use the el() matrix function, and then save each required element in a scalar. In

matrix notation, the coefficients of interest are in the first row, columns three and four (i.e., eb[1,3] and

eb[1,4]). In the variance-covariance matrix, cov(2.race, 3.race) corresponds to element eV[4,3], and the
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respective variances to eV[3,3] and eV[4,4]. Now we have everything we need to issue the sdii command.

Since the associated SDIs overlap, the two coefficients are statistically indistinguishable. As an accuracy

check we also report the difference in estimates. The point estimate, standard error, and confidence interval

of the difference in coefficients (i.e., the (1−2) estimate) match perfectly the nlcom results.
. matrix eb = e(b)

. matrix eV = e(V)

. mat list eb

eb[1,5]
diabetes: diabetes: diabetes: diabetes: diabetes:

1b. 2. 3.
age race race race _cons

y1 .05955192 0 .72212626 .19302558 -6.3301745

. mat list eV

symmetric eV[5,5]
diabetes: diabetes: diabetes: diabetes: diabetes:

1b. 2. 3.
age race race race _cons

diabetes:age .00001395
diabetes:1b.race 0 0
diabetes:2.race .00002225 0 .01613574
diabetes:3.race .00003014 0 .00271974 .12372701
diabetes:_cons -.000844 0 -.00401792 -.00449537 .05373939

. tempname m1 s1 m2 s2 cor12

. scalar `m1´ = el(eb,1,3)

. scalar `s1´ = sqrt(el(eV,3,3))

. scalar `m2´ = el(eb,1,4)

. scalar `s2´ = sqrt(el(eV,4,4))

. scalar `cor12´ = el(eV,4,3)/(sqrt(el(eV,3,3))*sqrt(el(eV,4,4)))

. sdii, sample1(`=`m1´´ `=`s1´´) sample2(`=`m2´´ `=`s2´´) corr(`=`cor12´´) diff

SDI Results

Comparison : Two distributions with correlation ρ = 0.06
(1) : sample1
(2) : sample2
Statistic : mean; (1-2) = mean(1) - mean(2)
Interval type : Standard error-based SDIs & CI

Statistic Std. Err. [Interval Bounds] (%) Type

(1) .72212626 .12702654 .53147122 .91278129 86.7 SDI
(2) .19302558 .35174851 -.33491625 .7209674 86.7 SDI
(1-2) .52910068 .36663779 -.18949618 1.2476975 95 CI

Note: SDIs indicate significance of difference from 0.

Instead of using numerical tables, some researches prefer to report their findings using graphs like the

one in Figure 1. In particular, Figure 1a1 plots the nlcom result, that is, the difference between the Blacks

and Other Minorities coefficients. Since the CI of the difference contains zero, it means the two coefficients
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Figure 1: Comparing estimated coefficients

(a) The difference in estimates approach

(a1) The difference with the standard CI
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(a2) The estimates with the standard CI
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(b) The significance of differences interval method
The estimates with SDIs
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Note: 86.7% SDI.

Note: Figure 1a illustrates the difference in estimates approach, whereas Figure 1b the SDI method.

are not statistically different. Notably, the difference does not reveal the values used to create it, which

is necessary to assess the rate of change. Moreover, while both our coefficients are positive, a 0.5 point

estimate could also be the difference between two negative coefficients (e.g., (−0.5− (−1))). To put this

finding in context, we need to graph the compared coefficients as well (i.e., the logit estimates), Figure 1a2.

Taken together, these two sets of results illustrate the counterintuitive scenario where the compared estimates

are statistically indistinguishable, even though only one (not both) of them is significant.

Figure 1b plots the compared coefficients with SDIs that can be used for direct comparisons. Since

the associated 86.7% SDIs overlap, the two coefficients are not statistically different. By presenting a single

set of results the SDI method is more parsimonious. Conversely, having two sets of results creates redun-
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dancy and may lead to confusion. By using different line patterns, SDI graphs can also outline whether the

individual estimates are statistically significant. Specifically, in Figure 1b we use solid lines for the SDI

if a particular coefficient is significant at the 0.05 level, and dashed lines otherwise. Thus, the SDI level

indicates whether the estimates are statistically different from each other, whereas the SDI pattern indicates

whether they are different from zero. In this case both the CI and the SDI associated with the Other Minori-

ties coefficient cross zero. However, since SDIs are narrower than the standard CI, there are cases where

only the CI (but not the SDI) contains zero.

Example 12: Compute SDIs to compare margins results
In our last example we show how to use sdii to compare predicted probabilities computed via margins.

Let us say we want to examine whether older people are more likely to have diabetes than younger people.

Specifically, we are going to compare the probability of being diabetic when age is fixed at its 25th and

75th percentile, respectively. All other covariates are held at their observed values. To obtain the respective

percentiles of age, we use summarize, detail; to keep things concise, we use quietly to suppress the

output. As we will use nlcom to calculate the difference in probabilities, we also need to post the margins

results. In this analysis it happens that the 95% CI of the individual probabilities do not overlap and, as

a result, we can conclude that younger people are significantly less likely to have diabetes. However, the

proper test (one that also covers cases where there is overlap) is to check whether the CI of the difference in

probabilities contains zero. Since the two probabilities are distinct, the CI of the nlcom estimate does not.
. quietly sum age, detail

. margins, at(age=(`r(p25)´ `r(p75)´)) post

Predictive margins Number of obs = 10,335
Model VCE : OIM

Expression : Pr(diabetes), predict()

1._at : age = 31

2._at : age = 63

Delta-method
Margin Std. Err. z P>|z| [95% Conf. Interval]

_at
1 .0124204 .001453 8.55 0.000 .0095726 .0152683
2 .0775952 .0034146 22.72 0.000 .0709027 .0842877

. nlcom _b[1._at]-_b[2._at]

_nl_1: _b[1._at]-_b[2._at]

Coef. Std. Err. z P>|z| [95% Conf. Interval]

_nl_1 -.0651748 .0034555 -18.86 0.000 -.0719474 -.0584022

Can we consolidate all this information (i.e., the individual probabilities (the margins results) and

the significance of difference test (the nlcom finding)), into a single set of results? This can be achieved by
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computing SDIs around the probability of having diabetes for young and old respondents, as shown below.

As before, we use the information that margins saves in r(b) and r(V). Since the associated SDIs do not

overlap, we can conclude that the two probabilities are distinct. The sdii results pass again the accuracy

test, that is, the information on the difference in probabilities matches perfectly the nlcom results. Since we

posted the results from the previous margins command, we first have to rerun the logit model and reissue

the margins command.
. quietly logit diabetes age i.race

. quietly sum age, detail

. quietly margins, at(age=(`r(p25)´ `r(p75)´))

. tempname m1 s1 m2 s2 cor12

. scalar `m1´ = el(r(b),1,1)

. scalar `s1´ = sqrt(el(r(V),1,1))

. scalar `m2´ = el(r(b),1,2)

. scalar `s2´ = sqrt(el(r(V),2,2))

. scalar `cor12´ = el(r(V),2,1)/(sqrt(el(r(V),1,1))*sqrt(el(r(V),2,2)))

. sdii, sample1(`=`m1´´ `=`s1´´) sample2(`=`m2´´ `=`s2´´) corr(`=`cor12´´) diff

SDI Results

Comparison : Two distributions with correlation ρ = 0.18
(1) : sample1
(2) : sample2
Statistic : mean; (1-2) = mean(1) - mean(2)
Interval type : Standard error-based SDIs & CI

Statistic Std. Err. [Interval Bounds] (%) Type

(1) .01242043 .001453 .01039877 .01444209 83.6 SDI
(2) .07759522 .0034146 .07284426 .08234617 83.6 SDI
(1-2) -.06517479 .00345548 -.0719474 -.05840218 95 CI

Note: SDIs indicate significance of difference from 0.

Stored results

sdii stores the following in r():

Scalars
r(level)
r(mvalue)
r(sd_1)
r(sd_2)
r(sd_d)

confidence level
meaningful value m
standard deviation for distribution or sample 1
standard deviation for distribution or sample 2
with difference; (combined) standard deviation for the difference in
estimates

For samples
r(alpha)
r(delta)

with power; significance level
with power; minimum effect size
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r(N_1)
r(N_2)
r(N_d)
r(power)

sample size for sample 1
sample size for sample 2
with difference; (combined) sample size for the difference in estimates
with power; power

For paired data
r(rho) correlation level

Macros
r(cmd)
r(cmdline)
r(type)

sdii
command as typed
type of the uncertainty interval

Matrices
r(sdii) matrix containing the compared statistics with their standard errors, test

statistics, p-values, degrees of freedom, critical values, lower and
upper confidence limits, and confidence level of the uncertainty
interval

Methods and formulas

Formulas for significance of differences critical scores

To compute SDIs to indicate whether two distributions, let us say Q1 and Q2, are statistically or substantively

distinct we need to use a significance of differences zd|m-score that satisfies the following equality

zd|m =
z
√

SE2
1 +SE2

2 −2ρSE1SE2 +m

SE1 +SE2

where SE1 and SE2 are Q1’s and Q2’s standard errors, z is the standard score, ρ is the correlation level, and

m is the value of a meaningful effect. When checking for statistical significance only, m = 0.

The analogous td|m-score for paired samples is

td|m =
T
(
d f , 1

2 α
)√

SE2
1 +SE2

2 −2ρSE1SE2 +m

SE1 +SE2

where T
(
d f , 1

2 α
)

is the function for the survivor Student’s t distribution, d f is the degrees of freedom, and

α is the significance level (Gosset [Student, pseud.], 1908).

The formula for the td∗|m-scores for unpaired samples with unequal number of observations is

td1|mSE1 + td2|mSE2 = tdiffSEdiff +m

T
(

d f1,
1
2

αd

)
SE1 +T

(
d f2,

1
2

αd

)
SE2 = T

(
d fdiff,

1
2

α

)
SEdiff +m

This equation does not have an analytical solution.
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Formulas for paired and unpaired sample data

The test for µx = µy when σx and σy are unknown but σx = σy is given by

t =
x− y{

(nx−1)s2
x+(ny−1)s2

y
nx+ny−2

}1/2(
1
nx
+ 1

ny

)1/2

The result is distributed as Student’s t with nx +ny−2 degrees of freedom.

The test for µx = µy when σx and σy are unknown and σx 6= σy is given by

t =
x− y(

s2
x/nx + s2

y/ny
)1/2

The result is distributed as Student’s t with v degrees of freedom, where v is given by (with Satterthwaite’s

(1946) formula) (
s2

x/nx + s2
y/ny

)2(
s2

x/nx

)2

nx−1 +

(
s2

y/ny

)2

ny−1

With Welch’s formula (1947), the number of degrees of freedom is given by

−2+

(
s2

x/nx + s2
y/ny

)2(
s2

x/nx

)2

nx+1 +

(
s2

y/ny

)2

ny+1

Formulas for percentiles

The default formula for percentiles is as follows. Let x( j) refer to the x in ascending order for j = 1,2, . . . ,n.

Let w( j) refer to the corresponding weights of x( j); if there are no weights, w( j) = 1. Let N = ∑
n
j=1 w( j).

To obtain the pth percentile, denoted as x[p], let P = N p/100, and let

W(i) =
i

∑
j=1

w( j)

Find the first index, i, such that W(i) > P. The pth percentile is then

x[p] =


x(i−1)+x(i)

2 if W(i−1) = P

x(i) otherwise

When the altdef suboption is specified, the following alternative definition is used. Here weights are

not allowed. Let i be the integer floor of (n+1)p/100; that is, i is the largest integer i≤ (n+1)p/100. Let

h be the remainder h = (n+1)p/100− i. The pth percentile is then

x[p] = (1−h)x(i)+hx(i+1)

where x(0) is taken to be x(1) and x(n+1) is taken to be x(n).
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