
The ginteff User’s Manual

ginteff – compute two- and three-way interaction effects1

Description
ginteff computes the average and individual-level interaction effects for two- and three-way interactions.

The effect of the interacted variables can be computed via either the partial derivative or the first difference.2

Quick start
Compute the two-way interaction effect between x1 and x2 after

logit y c.x1##c.x2 x3 x4

by taking the cross partial derivative with respect to x1 and x2, while holding x3 and x4 at observed values:

ginteff, dydxs(x1 x2)

As above, but for all combinations of x3 = 10, 20, 30, 40 and x4 = 50, 100:

ginteff, dydxs(x1 x2) at(x3=(10(10)40) x4=(50 100))

Compute the interaction effect between x1 and x2 via the first difference approach. Specifically, calculate

the effect of increasing both x1 and x2 by 1-unit:

ginteff, firstdiff((asobserved) x1 x2) nunit((1) x1 x2)

Compute the three-way interaction effect between x1, x2, and x3 after

probit y c.x1##c.x2##c.x3

by taking the third-order cross partial derivative with respect to x1, x2, and x3:

ginteff, dydxs(x1 x2 x3)

Compute the same three-way interaction effect via the first difference approach. Specifically, calculate the

effect of increasing x1 by 2 units from its mean, x2 by 8 units from its 25th percentile, and x3 by 1 unit from

x3 = 50:

ginteff, fd((mean) x1 (p25) x2 x3=50) nunit((2) x1 (8) x2 (1) x3)

Compute the two-way interaction effect between x1 and x2 after

poisson y c.x1##i.x2

for the predicted count, by taking the partial derivative with respect to x1 (a continuous variable), and

calculating the discrete change from the base level for x2 (a factor variable):

ginteff, dydxs(x1 x2)

1 The ginteff program and its associated manual come “as is” without warranty of any kind, either
expressed or implied, including, but not limited to, the suitability and fitness for a particular purpose. Im-
provements and/or changes in the product and the program described in this manual may be made at any
time and without notice.

2 The description of the syntax and that of various options borrow heavily, or reproduce excerpts ad
litteram, from Stata’s official margins manual. Instead of referencing that manual repeatedly, this helps
make the ginteff manual self-contained.
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Compute the same two-way interaction effect, but use the first difference to calculate the change in x1.

Specifically, calculate the effect of a 0.5 units decrease in x1 raised to the power of 2, and the discrete

change from the base level for x2:

ginteff, fd(x1=gen(x1ˆ2)) nunit((-0.5) x1) dydxs(x2)

Compute the three-way interaction effect between x1, x2, and x3 after

tobit y i.x1##i.x2##i.x3, ll(0)

for the censored expected value of y, ystar(0,.), for all combinations between the discrete changes from

the base level for x1, x2, and x3:

ginteff, dydxs(x1 x2 x3) predict(ystar(0,.))

Syntax
ginteff

[
if
] [

in
] [

weight
]

, effect_computation
[

options
]

effect_computation Description

dydxs(dxspec) specify the interacted variables for which to compute the effect via partial
derivative

fd(fdspec) shorthand for firstdiff()
firstdiff(fdspec) specify the interacted variables for which to compute the effect via first

difference

One of dydxs() or firstdiff() is required. A minimum of two and a maximum of three variables must

be specified in dydxs() and/or firstdiff().

options Description

Main
atdxs(atdxspec) fix the interacted variables in dydxs() to specified values
nunit((#) varlist) specify the unit increase for each variable in firstdiff()
obseff(stub) create new variable(s) with the interaction effect for each observation

Auxiliary
at(atspec) compute the interaction effect at specified values of covariates
intequation(eqno) identify the interaction equation; default is intequation(#1)
level(#) set confidence level; default is level(95)
many report more than 100 results; maximum is 1,000
nolegend suppress output legend
noweights ignore weights specified in estimation
post post interaction effects and their VCE as estimation results
predict(pred_opt) compute the interaction effect for predict, pred_opt
vce(vcetype) specify how the VCE and standard errors are calculated; the default is

vce(delta)

Note: Syntax elements within square brackets [ ] are optional. Underlining indicates minimal abbreviation.
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Options:
Main

atdxs(atdxspec) fixes the continuous variables in dydxs() at specific values. See the Syntax of atdxs()
section for more information.

dydxs(dxspec) specifies the interacted variables for which the effect is to be computed via the partial

derivative. For factor variables, dydxs() calculates the discrete change from the base level. See the

Syntax of dydxs() section for more information.

firstdiff(fdspec) specifies the interacted variables for which the effect is to be computed via the first

difference, and also sets their starting values. Variables in firstdiff() must be continuous. See the

Syntax of firstdiff() section for more information.

nunit((#) varlist) indicates the unit increase for each variable in firstdiff(). See the Syntax of
nunit() section for more information.

obseff(stub) creates a new variable containing the interaction effect for each observation in the sample

data. The (possibly many) variables are named consecutively, starting with stub1. stub may not exceed

16 characters in length.

Auxiliary

at(atspec) specifies values for covariates to be treated as fixed. See the Syntax of at() section for more

information. Only one at() option can be specified.

intequation(eqno) is relevant only when you have previously fit a multi-equation model, and identifies

the interaction equation. For instance, intequation(#1) would mean the interacted variables are in

the first equation, intequation(#2) would mean the second, and so on. You could also refer to

the equations by their names. intequation(health) would refer to the equation named health and

intequation(diabetes) to the equation named diabetes. If you do not specify intequation(),

results are the same as if you specified intequation(#1).

level(#) specifies the confidence level, as a percentage, for confidence intervals. The default is level(95)

or as set by set level.

many raises the maximum number of output estimates from 100 to 1,000.

nolegend specifies that the legend detailing the ginteff output and that showing the fixed values of

covariates be suppressed.

noweights specifies that any weights specified on the previous estimation command be ignored by

ginteff. By default, ginteff uses the weights specified on the estimator. If weights are speci-

fied on the ginteff command, they override previously specified weights, making it unnecessary to

specify noweights.

post causes ginteff to behave like a Stata estimation (e-class) command. ginteff posts the vector of

interaction effects along with the estimated variance–covariance matrix to e(), so you can treat these

3



estimates just as you would results from any other estimation command. For example, you could use

nlcom to test whether two interaction effects are statistically different.

predict(pred_opt) specifies the option(s) to be used with the predict command to produce the variable

that will be used as the response. After estimation by logistic, one could specify predict(xb) to

obtain linear predictions rather than the predict command’s default, the probabilities. Only one

predict() option can be specified.

vce(delta) and vce(unconditional) specify how the VCE and standard errors are calculated.

vce(delta) is the default. The delta method is applied to the formula for the response and the VCE

of the estimation command. This method assumes that values of the covariates used to calculate the

response are given or, if all covariates are not fixed using at(), that the data are given.

vce(unconditional) specifies that the covariates that are not fixed be treated in a way that accounts

for their having been sampled. The VCE is estimated using the linearization method. This method al-

lows for heteroskedasticity or other violations of distributional assumptions and allows for correlation

among the observations in the same manner as vce(robust) and vce(cluster ...), which may

have been specified with the estimation command. This method also accounts for complex survey

designs if the data are svyset.

Syntax of at()
In at(atspec), atspec may contain one or more of the following specifications:

varlist

(stat) varlist

varname = #

varname = (numlist)

varname = generate(exp)

where
1. Variable names (whether in varname or varlist) may be continuous variables, factor variables, or

specific level variables, such as age, group, or 3.group.

2. varlist may also be one of the three standard lists:
a. _all (all covariates),

b. _factor (all factor-variable covariates), or

c. _continuous (all continuous covariates).
3. (stat) can be any of the following:

Variables
stat Description allowed

asobserved at observed values in the sample (default) all

(continued on next page)
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Variables
stat Description allowed

mean means (default for varlist) all
median medians continuous
p1 1st percentile continuous
p2 2nd percentile continuous
. . . 3rd–49th percentiles continuous
p50 50th percentile (same as median) continuous
. . . 51st–97th percentiles continuous
p98 98th percentile continuous
p99 99th percentile continuous
min minimums continuous
max maximums continuous
zero fixed to zero continuous
base base level factors
asbalanced all levels equally probable and sum to 1 factors

Note: Underlining indicates minimal abbreviation.

When no (stat) is specified, (mean) is assumed. If (stat) is not followed by a varlist, (stat) is ignored.

The various stats are computed using the estimation sample. Specifically, the value of x in option

at((mean) x), equals the mean obtain by typing sum x if e(sample). To also include the x values of

dropped observations (if any) when calculating the mean, type instead
. sum x, meanonly
. local m `r(mean)´
. ginteff, at(x=`m´)

at() cannot be used to set the interacted variables listed in dydxs() or firstdiff(). If the inter-

acted variables are listed in at(), the program will stop and issue an error. The standard variable lists (i.e.,

_all, _factor, and _continuous) can still be used with at(), but they will affect the variables in the

respective categories except the interacted variables.

Syntax of atdxs()
atdxs(atdxspec) can be used only in combination with dydxs(), and the variables listed in the two options

must match. In other words, only the dydxs() variables can be set via atdxs(). Save the exceptions below,

the specifications of atdxspec are identical to those of atspec (see the Syntax of at() section).

The exceptions of atdxspec:

1. Factor variables cannot be set via atdxs() since the derivative is the discrete change from the base

level. As a result, factor variables cannot be fixed at specific values or levels. _factor variable list

is not allowed, but one may still employ the remaining standard lists (i.e., _all and _continuous).

Since factor variables cannot be set via atdxs(), specifying either _all or _continuous produces

the same result.
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2. If specifying varname = #, # must be a single value (i.e., numeric lists are not allowed).

Syntax of dydxs()
dydxs(dxspec) specifies the covariates for which the effect is to be computed by partial derivative. Up to

three variables can be specified (xs∈ {x1,x2,x3}), to respectively indicate a partial, a second- or a third-order

cross partial derivative, i.e., ∂y
∂x1

, ∂ 2y
∂x1∂x2

, or ∂ 3y
∂x1∂x2∂x3

. For factor variables, dydxs() calculates the discrete

change from the base level.

In dydxs(dxspec), dxspec may contain one or more of the following specifications:

varlist

j.factorvar

bk.factorvar

bk.j.factorvar

where
1. Variable names (whether in varname or varlist) may be continuous or factor variables that are inter-

acted in the model.

2. In the syntax for factor variables only
a. j and k are actual factor level values.

b. b stands for base level.
As the base level, k must be a single value. j indicates the specific factor levels for which the discrete

change is to be calculated, and can be either one value or a list of factor levels separated by a dot (e.g.,

1.2.3.factorvar). To illustrate the use of specific factor levels, let us say we have a three-level factor

variable, {1, 2, 3}. Assuming 1 is the base level, dydxs(factorvar) calculates two discrete changes, (2

vs 1) and (3 vs 1). Typing dydxs(3.factorvar) calculates a single discrete change, (3 vs 1), as only one

level is specified. This is particularly useful when a factor variable has are many levels but the researcher is

interested in one particular contrast.

Typing dydxs(b2.factorvar) changes on the fly the base level from 1 to 2, without having to rees-

timate the model. The two discrete changes are now (1 vs 2) and (3 vs 2). Since ginteff automatically

calculates the discrete change for all factor levels, typing dydxs(b2.factorvar) produces the same result as

dydxs(b2.1.3.factorvar). By contrast, dydxs(b2.3.factorvar) calculates a single discrete change, (3 vs

2). When resetting the base level that value must be specified first. Thus, dydxs(3.b2.factorvar) is not a

valid specification.

Only one argument per interacted variable is allowed. Thus, to examine a subset of factor con-

trasts, the respective levels must be listed together, e.g., dydxs(2.3.factorvar) and not dydxs(2.factorvar

3.factorvar).

Syntax of firstdiff()
In firstdiff(fdspec), fdspec may contain one or more of the following specifications:

varlist

(fdstat) varlist
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varname = #

varname = generate(exp)

where

1. Variable names (whether in varname or varlist) must be continuous variables that are interacted in the

model.

2. (#) must be a single value (i.e., numeric lists are not allowed).

3. fdstat can be any of the following:

fdstat Description

asobserved at observed values in the sample (default)
mean means
median medians
p1 1st percentile
p2 2nd percentile
. . . 3rd–49th percentiles
p50 50th percentile (same as median)
. . . 51st–97th percentiles
p98 98th percentile
p99 99th percentile
min minimums
max maximums
zero fixed to zero

Note: Underlining indicates minimal abbreviation.

When no (fdstat) is specified, (asobserved) is assumed. If (fdstat) is not followed by a varlist,

(fdstat) is ignored.

The various fdstats are computed using the estimation sample. Specifically, the value of x in option

firstdiff((mean) x), equals the mean obtain by typing sum x if e(sample). To also include the x

values of dropped observations (if any) when calculating the mean, type instead
. sum x, meanonly
. local m `r(mean)´
. ginteff, firstdiff(x=`m´)

Syntax of nunit()
nunit() can be used only in combination with firstdiff(), and the variables listed in the two options

must match. nunit() takes just one specification

(#) varname

where

1. (#) indicates the unit increase for the respective variable.

2. (#) must be a single value (i.e., numeric lists are not allowed).

7



3. All or a subset of the interacted variables can be listed after the same (#). Alternatively, sepa-

rate values for the unit increase can be specified for each individual variable. For example, both

nunit((5) x1x2x3) and nunit((3) x1 (10) x2 (2) x3) are valid arguments. The former specifica-

tion evaluates a 5-unit increase in x1, x2, and x3, whereas the latter a 3-unit increase in x1, a 10-unit

increase in x2, and a 2-unit increase in x3.

4. Only one (#) can be applied to a given covariate. If more than one is specified, the rightmost specifi-

cation is respected. For example, nunit((1) x1x2 (2) x1x3) evaluates a 1-unit increase in x2, and a

2-unit increase in x1 and x3.

If nunit() is missing, ginteff automatically computes the effect of a 1-unit increase for all vari-

ables in firstdiff(). Thus, ginteff, fd(x1 x2) nunit((1) x1 x2) produces the same result as

ginteff, fd(x1 x2).

Remarks and examples
The upcoming examples use the data from the Second National Health and Nutrition Examination Survey,

available from the StataCorp website (nhanes2f.dta). The dependent variable, health, is a five-point indi-

cator of respondents’ wellbeing (i.e., poor, fair, average, good, and excellent). For Example 1–7, we use a

simplified, two-level indicator of health, health_2l, which is coded 1 if health is above average (i.e., good

or excellent), and 0 otherwise. There are five independent variables; three are continuous (age, height, and

weight), and two factors (female and race). female is coded 0 for males, and 1 for females. race is a three

category variable, where 1 = white, 2 = black, and 3 = other.

Example 1: Compute the average and observation-level interaction effects for factor variables
The first example illustrates how to compute the interaction effect after a logistic regression, with female

and race being the interacted variables. First we upload the data and create the dummy health indicator, and

then estimate the model.
. webuse nhanes2f, clear

. keep health diabetes race female age height weight

. clonevar health_2l = health
(2 missing values generated)

. recode health_2l (1/3=0) (4/5=1) // two-level health
(health_2l: 10335 changes made)

.

. logit health_2l b0.female##b1.race age height weight, nolog

Logistic regression Number of obs = 10,335
LR chi2(8) = 1400.39
Prob > chi2 = 0.0000

Log likelihood = -6457.9191 Pseudo R2 = 0.0978

health_2l Coef. Std. Err. z P>|z| [95% Conf. Interval]

1.female .216087 .0628679 3.44 0.001 .0928681 .3393059

race

8

nhanes2f.dta


Black -.813307 .1043427 -7.79 0.000 -1.017815 -.6087991
Other -.4054997 .2153029 -1.88 0.060 -.8274856 .0164862

female#race
1#Black -.2540739 .1462076 -1.74 0.082 -.5406354 .0324877
1#Other .1834579 .3059663 0.60 0.549 -.4162251 .7831409

age -.0369468 .0013163 -28.07 0.000 -.0395266 -.0343669
height .0335985 .0034593 9.71 0.000 .0268183 .0403786
weight -.0096669 .0016101 -6.00 0.000 -.0128227 -.0065112
_cons -3.26368 .5924921 -5.51 0.000 -4.424943 -2.102417

Next we compute the interaction effect using ginteff. In this particular case, we specify three

options. In option dydxs() we list the two interacted variables, female and race. Since both are factor

variables, their effect is calculated as the discrete change from the base level, or, in Stata’s parlance, a

contrast. By using option obseff(), we instruct ginteff to also compute the individual interaction effects

for all cases in the data. The observation-level effects are stored in two variables, called obseff_fr1 and

obseff_fr2, one for each contrast of race. The name of these variables is taken from the stub argument in

obseff(obseff_fr). Lastly, via the level() option we change the default 0.05 significance level to 0.1, by

requesting 90% CIs around the estimated effects.
. ginteff, dydxs(female race) obseff(obs_fr) level(90)

Interaction Effects
Statistic : Average interaction effect
Standard error : Delta-method
∆(i.x1) : dy/dx w.r.t. x1; x1 : b0.i(1).female
∆(i.x2) : dy/dx w.r.t. x2; x2 : b1.i(2.3).race
Number of obs = 10,335

Expression : Pr(health_2l), predict()

Statistic Std. Err. [90% Conf. Interval]

∆(1.x1)#∆(2.x2) -.05460184 .02826438 -.10109261 -.00811106
∆(1.x1)#∆(3.x2) .03876595 .06576437 -.0694068 .14693871

Note: dy/dx for factor levels is the discrete change from the base level.

. sum obs_fr*

Variable Obs Mean Std. Dev. Min Max

obs_fr1 10,335 -.0546018 .006274 -.0618385 -.0247582
obs_fr2 10,335 .038766 .0088642 .0102487 .048169

To keep things concise, we frame the discussion around the effect of gender on health (i.e., the change

in the probability of being in good health between a female and a male), attributable to specific changes in

racial status. The interaction effect is computed separately for the two contrasts of race, using whites as the

base category. The first estimate indicates that the effect of gender on health attributable to the difference in

racial status between blacks and whites, is negative and statistically significant. Specifically, the probability

of being in good health decreases by 0.055 (-0.101, -0.008) percentage points. This means that, on average,
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black women fare worse than white women. By contrast, women from racial groups other than black may

fare better than white women, as the second estimate is positive 0.039 (-0.069, 0.147). But this effect is not

statistically significant at the 0.1 significance level, since its CI contains zero.

What about the observation-level effects? Since ginteff computes the average interaction effect,

the mean of the individual effects should match the default results. This is indeed the case, as the mean of

variables obseff1 and obseff2 are identical to the first and second ginteff point estimates, respectively.

Example 2: Compute the interaction effect for specific factor levels, and alternative at() scenarios
In Example 1 the interaction effect is calculated assuming we move from males to females, and from whites

to either black or other racial minorities. The respective reference categories for the interacted variables (i.e.,

male for gender and white for race), match the base levels from the estimation model. What if the analyst

wants to calculate the effect associated with a change in racial status from, let us say, other minorities (race

= 3) to black (race = 2), while also switching the reference category for gender to female? One approach

is to rerun the analysis with the updated base levels (i.e., logit health_2l b1.female##b3.race age

height weight), and then reissue the ginteff command. However, there is an easier way to achieve this.

ginteff allows the analyst to change on the fly the base level of factors, or request a subset of contrasts.

The example below illustrates these features, as well as the use of option at(). Researchers can liberally

employ the at() option to specify any number of relevant scenarios. Here we compute the interaction effect

for all possible combinations of the minimum and maximum values of age, the 10th and 90th percentiles of

weight, while height is set at its median value.
. quietly sum age

. local a1 `r(min)´

. local a2 `r(max)´

. _pctile weight, percentiles(10 90)

. local w1 `r(r1)´

. local w2 `r(r2)´

. ginteff, dydxs(b3.2.race b1.female) at(age=(`a1´ `a2´) (median) height weight=(`w1´ `w2´))

Interaction Effects
Statistic : Average interaction effect
Standard error : Delta-method
∆(i.x1) : dy/dx w.r.t. x1; x1 : b1.i(0).female
∆(i.x2) : dy/dx w.r.t. x2; x2 : b3.i(2).race
Number of obs = 10,335

Expression : Pr(health_2l), predict()

1._at : age = 20
: height = 167.297 (median)
: weight = 53.52

2._at : age = 20
: height = 167.297 (median)
: weight = 91.63

3._at : age = 74
: height = 167.297 (median)
: weight = 53.52

4._at : age = 74
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: height = 167.297 (median)
: weight = 91.63

Statistic Std. Err. [95% Conf. Interval]

1._at#∆(0.x1)#∆(2.x2) .09147061 .07089599 -.04748299 .2304242
2._at#∆(0.x1)#∆(2.x2) .10248955 .07815005 -.05068174 .25566083
3._at#∆(0.x1)#∆(2.x2) .0796744 .05976606 -.03746492 .19681373
4._at#∆(0.x1)#∆(2.x2) .06453411 .04867005 -.03085744 .15992565

Note: dy/dx for factor levels is the discrete change from the base level.

Example 3: Compute the interaction effect for continuous variables via the partial derivative
This example illustrates how to compute a three-way interaction effect between continuous variables via the

partial derivative. First, we estimate a new model where age, weight, and height are interacted. Second,

we issue the ginteff command with the respective variables listed in dydxs(). By taking the third-order

cross partial derivative, we compute the interaction effect attributable to a very small increase in all three

variables. We also set factor variables to their respective base levels.
. logit health_2l c.age##c.height##c.weight i.female i.race, nolog

Logistic regression Number of obs = 10,335
LR chi2(10) = 1417.51
Prob > chi2 = 0.0000

Log likelihood = -6449.3627 Pseudo R2 = 0.0990

health_2l Coef. Std. Err. z P>|z| [95% Conf. Interval]

age .001678 .1032571 0.02 0.987 -.2007021 .2040582
height .0253216 .0309574 0.82 0.413 -.0353539 .085997

c.age#c.height -.0002789 .0006242 -0.45 0.655 -.0015023 .0009444

weight -.1002978 .070644 -1.42 0.156 -.2387575 .0381618

c.age#c.weight .0008552 .0014173 0.60 0.546 -.0019227 .0036332

c.height#c.weight .0005045 .0004184 1.21 0.228 -.0003155 .0013245

c.age#c.height#c.weight -4.40e-06 8.45e-06 -0.52 0.603 -.000021 .0000122

1.female .1912482 .0608111 3.14 0.002 .0720605 .3104358

race
Black -.9377468 .0736429 -12.73 0.000 -1.082084 -.7934094
Other -.3235315 .1540024 -2.10 0.036 -.6253707 -.0216924

_cons -1.482623 5.156587 -0.29 0.774 -11.58935 8.624102

. ginteff, dydxs(age height weight) at((base) _factor)

Interaction Effects
Statistic : Average interaction effect
Standard error : Delta-method
∆(x1) : dy/dx w.r.t. x1; x1 : age (asobserved)
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∆(x2) : dy/dx w.r.t. x2; x2 : height (asobserved)
∆(x3) : dy/dx w.r.t. x3; x3 : weight (asobserved)
Number of obs = 10,335

Expression : Pr(health_2l), predict()

at : female = 0
: race = 1

Statistic Std. Err. [95% Conf. Interval]

∆(x1)#∆(x2)#∆(x3) -1.704e-06 8.473e-07 -3.364e-06 -4.291e-08

Example 4: Compute the interaction effect for continuous variables via the first difference
Alternatively, we can compute the three-way interaction effect from Example 3 using the first difference

approach. In this exercise we compute the interaction effect attributable to a 1-unit increase in all three

variables from their observed values. Factor variables are still set at their base level. Specifying nunit()

is optional when all variables listed in firstdiff() are to be increased by 1-unit. Spelling out the specific

unit increase by typing nunit((1) age height weight), would lead to the same result.
. ginteff, firstdiff(age height weight) at((base) _factor)

Interaction Effects
Statistic : Average interaction effect
Standard error : Delta-method
∆(x1) : (y|x1+n1)-(y|x1); x1 : age (asobserved), n1 = 1
∆(x2) : (y|x2+n2)-(y|x2); x2 : height (asobserved), n2 = 1
∆(x3) : (y|x3+n3)-(y|x3); x3 : weight (asobserved), n3 = 1
Number of obs = 10,335

Expression : Pr(health_2l), predict()

at : female = 0
: race = 1

Statistic Std. Err. [95% Conf. Interval]

∆(x1)#∆(x2)#∆(x3) -1.684e-06 1.428e-06 -4.483e-06 1.115e-06

Example 5: Compute the interaction effect for continuous variables via the first difference, cont.
The firstdiff() option, or fd() for short, can be used to compute far more complex scenarios than a

uniform 1-unit increase in all interacted variables. For this exercise, we compute the interaction effect as

age increases from mean to one standard deviation above the mean, height from min to max, and weight

decreases from its 50th percentile (median) to 10 units below median. Since the factor variables are no

longer specified, they are now set to their observed values (the default). Lastly, the nolegend option (nol

for short) suppresses the legend detailing the ginteff output and that showing the fixed values of covariates.
. quietly sum age

. local a `r(sd)´

. quietly sum height

. local h = r(max)-r(min)
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. ginteff, fd((mean) age (min) height (p50) weight) nunit((`a´) age (`h´) height (-10) weight) nol

Interaction Effects

Statistic Std. Err. [95% Conf. Interval]

∆(x1)#∆(x2)#∆(x3) .01436578 .01974282 -.02432943 .05306099

Example 6: Compute the interaction effect for multi-equation models
The above exercises are based on a simple logistic regression. But ginteff can accommodate more complex

models, including multi-equation ones. Let us consider a bivariate probit with two seemingly unrelated

equations. Specifically, we simultaneously estimate the probability of being in good health and having

diabetes, which should be negatively correlated. female and race are interacted in the health equation, and

age and female in the diabetes equation.
. biprobit (health_2l = i.female##i.race age) (diabetes = c.age##i.female), nolog

Seemingly unrelated bivariate probit Number of obs = 10,335
Wald chi2(9) = 1395.30

Log likelihood = -8268.4552 Prob > chi2 = 0.0000

Coef. Std. Err. z P>|z| [95% Conf. Interval]

health_2l
1.female -.0721203 .0272677 -2.64 0.008 -.1255639 -.0186766

race
Black -.4591418 .0622029 -7.38 0.000 -.5810572 -.3372264
Other -.3279656 .1293722 -2.54 0.011 -.5815305 -.0744006

female#race
1#Black -.1889397 .0863215 -2.19 0.029 -.3581268 -.0197527
1#Other .1192973 .184136 0.65 0.517 -.2416026 .4801972

age -.0249512 .0007582 -32.91 0.000 -.0264371 -.0234652
_cons 1.243855 .0415001 29.97 0.000 1.162516 1.325193

diabetes
age .0321037 .0027224 11.79 0.000 .0267679 .0374396

1.female .5661857 .2036856 2.78 0.005 .1669693 .9654021

female#c.age
1 -.0082077 .0033993 -2.41 0.016 -.0148703 -.0015452

_cons -3.461487 .1652544 -20.95 0.000 -3.78538 -3.137594

/athrho -.3574045 .0326712 -10.94 0.000 -.4214389 -.2933702

rho -.3429258 .0288291 -.3981419 -.2852338

Wald test of rho=0: chi2(1) = 119.671 Prob > chi2 = 0.0000

After estimating the model, we first compute the interaction effect between female and race. Option

intequation() is used to identify in which of the two equations the specific interaction is. In this case,
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it is the first equation. This is a necessary step because ginteff checks that the specified variables are

actually interacted and there are no missing terms. The same variable (e.g., female in our example), can have

different interacting terms in different equations. Equations can be specified by using either their position

number, or the name of the respective dependent variable. If intequation() is not specified, equation #1 is

assumed. Lastly, option predict(p11) instructs ginteff to compute the effect on the bivariate predicted

probability that both health_2l and diabetes equal 1, Pr(health_2l = 1, diabetes = 1). (Biprobit’s specialized

predict() suboptions are detailed in the model’s postestimation manual; see https://www.stata.com/

manuals/rbiprobitpostestimation.pdf).
. ginteff, dydxs(female race) predict(p11) inteq(#1)

Interaction Effects
Statistic : Average interaction effect
Standard error : Delta-method
∆(i.x1) : dy/dx w.r.t. x1; x1 : b0.i(1).female
∆(i.x2) : dy/dx w.r.t. x2; x2 : b1.i(2.3).race
Number of obs = 10,335

Expression : Pr(health_2l=1,diabetes=1), predict(p11)

Statistic Std. Err. [95% Conf. Interval]

∆(1.x1)#∆(2.x2) -.00178306 .00076936 -.00329098 -.00027513
∆(1.x1)#∆(3.x2) .00065051 .00167562 -.00263363 .00393466

Note: dy/dx for factor levels is the discrete change from the base level.

Example 7: Compute the interaction effect for multi-equation models, cont.
In this example, we compute the interaction effect between age and female, which are interacted in the

second equation. Specifying predict() with suboption pmarg2 indicates that we want to estimate the

effect of the simultaneous change in age and female on the univariate (marginal) predicted probability of

success in the second equation, Pr(diabetes = 1).
. ginteff, dydxs(age female) predict(pmarg2) inteq(diabetes)

Interaction Effects
Statistic : Average interaction effect
Standard error : Delta-method
∆(i.x1) : dy/dx w.r.t. x1; x1 : b0.i(1).female
∆(x2) : dy/dx w.r.t. x2; x2 : age (asobserved)
Number of obs = 10,335

Expression : Pr(diabetes=1), predict(pmarg2)

Statistic Std. Err. [95% Conf. Interval]

∆(1.x1)#∆(x2) -.00035901 .00033591 -.00101739 .00029937

Note: dy/dx for factor levels is the discrete change from the base level.

Example 8: Compute the interaction effect for models with a polychotomous dependent variable
The last two examples concern a scenario where we have a polychotomous dependent variable. Specifically,

for these exercises we use the original five-level health variable, and the estimation model is ordered logit.
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Notably, ginteff computes the interaction effect between age and female separately for each level of health.

In this exercise we compute the partial effect of age when this variable is set at mean. The default is to set

the continuous variables listed in dydxs() at their observed values. Using option atdxs(), the analyst can

set these variables to different values.
. ologit health c.age##i.female, nolog

Ordered logistic regression Number of obs = 10,335
LR chi2(3) = 1465.82
Prob > chi2 = 0.0000

Log likelihood = -15031.489 Pseudo R2 = 0.0465

health Coef. Std. Err. z P>|z| [95% Conf. Interval]

age -.0441621 .0015608 -28.29 0.000 -.0472212 -.0411029
1.female -.4835603 .1039157 -4.65 0.000 -.6872313 -.2798894

female#c.age
1 .007615 .0020643 3.69 0.000 .0035692 .0116609

/cut1 -4.931698 .090312 -5.108706 -4.75469
/cut2 -3.467161 .0829925 -3.629824 -3.304499
/cut3 -2.06566 .0784233 -2.219367 -1.911953
/cut4 -.828686 .0763793 -.9783867 -.6789852

. ginteff, dydxs(age female) atdxs((mean) age)

Interaction Effects
Statistic : Average interaction effect
Standard error : Delta-method
∆(i.x1) : dy/dx w.r.t. x1; x1 : b0.i(1).female
∆(x2) : dy/dx w.r.t. x2; x2 : age at (mean)
Number of obs = 10,335

1._pr : Pr(health==1), predict(pr outcome(1))
2._pr : Pr(health==2), predict(pr outcome(2))
3._pr : Pr(health==3), predict(pr outcome(3))
4._pr : Pr(health==4), predict(pr outcome(4))
5._pr : Pr(health==5), predict(pr outcome(5))

Statistic Std. Err. [95% Conf. Interval]

1._pr#∆(1.x1)#∆(x2) -.00018327 .00013524 -.00044833 .0000818
2._pr#∆(1.x1)#∆(x2) -.00062313 .0002427 -.00109881 -.00014745
3._pr#∆(1.x1)#∆(x2) -.00114956 .00022866 -.00159772 -.0007014
4._pr#∆(1.x1)#∆(x2) .00022737 .00021533 -.00019467 .0006494
5._pr#∆(1.x1)#∆(x2) .00172859 .00036701 .00100926 .00244793

Note: dy/dx for factor levels is the discrete change from the base level.

Example 9: Compute the interaction effect for models with a polychotomous dependent variable,
cont.
When there are many prediction levels, the output may become intractable (especially if we also specify

multiple at() scenarios). To focus on a given prediction, we can explicitly request a given outcome. Out of
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the five health levels, in this exercise we compute the interaction effect for the second outcome (health = 2).

As expected, the result matches the second effect from the full output in Exercise 8.
. ginteff, dydxs(age female) atdxs((mean) age) predict(outcome(#2))

Interaction Effects
Statistic : Average interaction effect
Standard error : Delta-method
∆(i.x1) : dy/dx w.r.t. x1; x1 : b0.i(1).female
∆(x2) : dy/dx w.r.t. x2; x2 : age at (mean)
Number of obs = 10,335

Expression : Pr(health==2), predict(outcome(#2))

Statistic Std. Err. [95% Conf. Interval]

∆(1.x1)#∆(x2) -.00062313 .0002427 -.00109881 -.00014745

Note: dy/dx for factor levels is the discrete change from the base level.

Stored results

ginteff stores the following in r():

Scalars
r(df_r)
r(level)
r(N)
r(N_psu)
r(N_strata)

variance degrees of freedom, survey data only
confidence level of confidence intervals
number of observations
number of sampled PSUs, survey data only
number of strata, survey data only

Macros
r(atstat)
r(cmd)
r(cmdline)
r(est_cmd)
r(est_cmdline)
r(fdstat)
r(model_vce)
r(obseff)
r(vce)

the at() specification
ginteff
command as typed
e(cmd) from original estimation results
e(cmdline) from original estimation results
the firstdiff() specification
vcetype from estimation command
the list of new variable(s) created because of the obseff() option
vcetype specified in vce()

Matrices
r(at)
r(b)
r(fd)
r(ginteff)

r(nunit)

matrix of values from the at() option
the interaction effect estimates
matrix of values from the firstdiff() option
matrix containing the average interaction effects with their standard errors,

test statistics, p-values, upper and lower confidence limits, and critical
values

matrix of values from the nunit() option
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r(V) variance–covariance matrix of the interaction effect estimates

ginteff with the post option also stores the following in e():

Scalars
e(df_r)
e(N)
e(N_psu)
e(N_strata)

variance degrees of freedom, survey data only
number of observations
number of sampled PSUs, survey data only
number of strata, survey data only

Macros
e(cmd)
e(properties)

ginteff
b V

Matrices
e(b)
e(V)

estimates
variance–covariance matrix of the estimates

Functions
e(sample) marks estimation sample
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